首页 > 文章列表 > numpy之多维数组的创建全过程

numpy之多维数组的创建全过程

Python
436 2023-05-14

numpy多维数组的创建

多维数组(矩阵ndarray)

ndarray的基本属性

  • shape维度的大小
  • ndim维度的个数
  • dtype数据类型

1.1 随机抽样创建

1.1.1 rand

生成指定维度的随机多维度浮点型数组,区间范围是[0,1)

Random values in a given shape.

            Create an array of the given shape and populate it with

            random samples from a uniform distribution

            over ``[0, 1)``.

nd1 = np.random.rand(1,1)

print(nd1)

print('维度的个数',nd1.ndim)

print('维度的大小',nd1.shape)

print('数据类型',nd1.dtype)   # float 64

1.1.2 uniform

def uniform(low=0.0, high=1.0, size=None): # real signature unknown; restored from __doc__

    """

    uniform(low=0.0, high=1.0, size=None)

            Draw samples from a uniform distribution.

            Samples are uniformly distributed over the half-open interval

            ``[low, high)`` (includes low, but excludes high).  In other words,

            any value within the given interval is equally likely to be drawn

            by `uniform`.

            Parameters

            ----------

            low : float or array_like of floats, optional

                Lower boundary of the output interval.  All values generated will be

                greater than or equal to low.  The default value is 0.

            high : float or array_like of floats

                Upper boundary of the output interval.  All values generated will be

                less than high.  The default value is 1.0.

            size : int or tuple of ints, optional

                Output shape.  If the given shape is, e.g., ``(m, n, k)``, then

                ``m * n * k`` samples are drawn.  If size is ``None`` (default),

                a single value is returned if ``low`` and ``high`` are both scalars.

                Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

            Returns

            -------

            out : ndarray or scalar

                Drawn samples from the parameterized uniform distribution.

            See Also

            --------

            randint : Discrete uniform distribution, yielding integers.

            random_integers : Discrete uniform distribution over the closed

                              interval ``[low, high]``.

            random_sample : Floats uniformly distributed over ``[0, 1)``.

            random : Alias for `random_sample`.

            rand : Convenience function that accepts dimensions as input, e.g.,

                   ``rand(2,2)`` would generate a 2-by-2 array of floats,

                   uniformly distributed over ``[0, 1)``.

            Notes

            -----

            The probability density function of the uniform distribution is

            .. math:: p(x) = \frac{1}{b - a}

            anywhere within the interval ``[a, b)``, and zero elsewhere.

            When ``high`` == ``low``, values of ``low`` will be returned.

            If ``high`` < ``low``, the results are officially undefined

            and may eventually raise an error, i.e. do not rely on this

            function to behave when passed arguments satisfying that

            inequality condition.

            Examples

            --------

            Draw samples from the distribution:

            >>> s = np.random.uniform(-1,0,1000)

            All values are within the given interval:

            >>> np.all(s >= -1)

            True

            >>> np.all(s < 0)

            True

            Display the histogram of the samples, along with the

            probability density function:

            >>> import matplotlib.pyplot as plt

            >>> count, bins, ignored = plt.hist(s, 15, density=True)

            >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')

            >>> plt.show()

    """

    pass
nd2 = np.random.uniform(-1,5,size = (2,3))

print(nd2)

print('维度的个数',nd2.ndim)

print('维度的大小',nd2.shape)

print('数据类型',nd2.dtype)

运行结果:

1.1.3 randint

def randint(low, high=None, size=None, dtype='l'): # real signature unknown; restored from __doc__

    """

    randint(low, high=None, size=None, dtype='l')

            Return random integers from `low` (inclusive) to `high` (exclusive).

            Return random integers from the "discrete uniform" distribution of

            the specified dtype in the "half-open" interval [`low`, `high`). If

            `high` is None (the default), then results are from [0, `low`).

            Parameters

            ----------

            low : int

                Lowest (signed) integer to be drawn from the distribution (unless

                ``high=None``, in which case this parameter is one above the

                *highest* such integer).

            high : int, optional

                If provided, one above the largest (signed) integer to be drawn

                from the distribution (see above for behavior if ``high=None``).

            size : int or tuple of ints, optional

                Output shape.  If the given shape is, e.g., ``(m, n, k)``, then

                ``m * n * k`` samples are drawn.  Default is None, in which case a

                single value is returned.

            dtype : dtype, optional

                Desired dtype of the result. All dtypes are determined by their

                name, i.e., 'int64', 'int', etc, so byteorder is not available

                and a specific precision may have different C types depending

                on the platform. The default value is 'np.int'.

                .. versionadded:: 1.11.0

            Returns

            -------

            out : int or ndarray of ints

                `size`-shaped array of random integers from the appropriate

                distribution, or a single such random int if `size` not provided.

            See Also

            --------

            random.random_integers : similar to `randint`, only for the closed

                interval [`low`, `high`], and 1 is the lowest value if `high` is

                omitted. In particular, this other one is the one to use to generate

                uniformly distributed discrete non-integers.

            Examples

            --------

            >>> np.random.randint(2, size=10)

            array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])

            >>> np.random.randint(1, size=10)

            array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

            Generate a 2 x 4 array of ints between 0 and 4, inclusive:

            >>> np.random.randint(5, size=(2, 4))

            array([[4, 0, 2, 1],

                   [3, 2, 2, 0]])

    """

    pass
nd3 = np.random.randint(1,20,size=(3,4))

print(nd3)

print('维度的个数',nd3.ndim)

print('维度的大小',nd3.shape)

print('数据类型',nd3.dtype)

展示:

[[11 17  5  6]

 [17  1 12  2]

 [13  9 10 16]]

维度的个数 2

维度的大小 (3, 4)

数据类型 int32

注意点:

1、如果没有指定最大值,只是指定了最小值,范围是[0,最小值)

2、如果有最小值,也有最大值,范围为[最小值,最大值)

1.2 序列创建

1.2.1 array

通过列表进行创建

nd4 = np.array([1,2,3])

展示:

[1 2 3]

通过列表嵌套列表创建

nd5 = np.array([[1,2,3],[4,5]])

展示:

[list([1, 2, 3]) list([4, 5])]

综合

nd4 = np.array([1,2,3])

print(nd4)

print(nd4.ndim)

print(nd4.shape)

print(nd4.dtype)

nd5 = np.array([[1,2,3],[4,5,6]])

print(nd5)

print(nd5.ndim)

print(nd5.shape)

print(nd5.dtype)

展示:

[1 2 3]

1

(3,)

int32

[[1 2 3]

 [4 5 6]]

2

(2, 3)

int32

1.2.2 zeros

nd6 = np.zeros((4,4))

print(nd6)

展示:

[[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

注意点:

1、创建的数里面的数据为0

2、默认的数据类型是float

3、可以指定其他的数据类型

1.2.3 ones

nd7 = np.ones((4,4))

print(nd7)

展示:

[[1. 1. 1. 1.]

 [1. 1. 1. 1.]

 [1. 1. 1. 1.]

 [1. 1. 1. 1.]]

1.2.4 arange

nd8 = np.arange(10)

print(nd8)

nd9 = np.arange(1,10)

print(nd9)

nd10 = np.arange(1,10,2)

print(nd10)

结果:

[0 1 2 3 4 5 6 7 8 9]

[1 2 3 4 5 6 7 8 9]

[1 3 5 7 9]

注意点:

  • 1、只填写一位数,范围:[0,填写的数字)
  • 2、填写两位,范围:[最低位,最高位)
  • 3、填写三位,填写的是(最低位,最高位,步长)
  • 4、创建的是一位数组
  • 5、等同于np.array(range())

1.3 数组重新排列

nd11 = np.arange(10)

print(nd11)

nd12 = nd11.reshape(2,5)

print(nd12)

print(nd11)

展示:

[0 1 2 3 4 5 6 7 8 9]

[[0 1 2 3 4]

 [5 6 7 8 9]]

[0 1 2 3 4 5 6 7 8 9]

注意点:

1、有返回值,返回新的数组,原始数组不受影响

2、进行维度大小的设置过程中,要注意数据的个数,注意元素的个数

nd13 = np.arange(10)

print(nd13)

nd14 = np.random.shuffle(nd13)

print(nd14)

print(nd13)

展示:

[0 1 2 3 4 5 6 7 8 9]

None

[8 2 6 7 9 3 5 1 0 4]

注意点:

1、在原始数据集上做的操作

2、将原始数组的元素进行重新排列,打乱顺序

3、shuffle这个是没有返回值的

两个可以配合使用,先打乱,在重新排列

1.4 数据类型的转换

nd15 = np.arange(10,dtype=np.int64)

print(nd15)

nd16 = nd15.astype(np.float64)

print(nd16)

print(nd15)

展示:

[0 1 2 3 4 5 6 7 8 9]

[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

[0 1 2 3 4 5 6 7 8 9]

注意点:

1、astype()不在原始数组做操作,有返回值,返回的是更改数据类型的新数组

2、在创建新数组的过程中,有dtype参数进行指定

1.5 数组转列表

arr1 = np.arange(10)

# 数组转列表

print(list(arr1))

print(arr1.tolist())

展示:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

numpy 多维数组相关问题

创建(多维)数组

x = np.zeros(shape=[10, 1000, 1000], dtype='int')

得到全零的多维数组。

数组赋值

x[*,*,*] = ***

np数组保存

np.save("./**.npy",x)

读取np数组

x = np.load("path")

总结