给我买咖啡☕
*备忘录:
*备忘录:
>初始化的第一个参数是大小(必需类型:int或tuple/list/list(int)或size()): *备忘录:
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomCrop randomcrop = RandomCrop(size=100) randomcrop = RandomCrop(size=100, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') randomcrop # RandomCrop(size=(100, 100), # pad_if_needed=False, # fill=0, # padding_mode=constant) randomcrop.size # (100, 100) print(randomcrop.padding) # None randomcrop.pad_if_needed # False randomcrop.fill # 0 randomcrop.padding_mode # 'constant' origin_data = OxfordIIITPet( root="data", transform=None ) s300_data = OxfordIIITPet( # `s` is size. root="data", transform=RandomCrop(size=300) # transform=RandomCrop(size=[300, 300]) ) s200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200) ) s100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=100) ) s50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=50) ) s10_data = OxfordIIITPet( root="data", transform=RandomCrop(size=10) ) s1_data = OxfordIIITPet( root="data", transform=RandomCrop(size=1) ) s200_300_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i in range(1, 6): plt.subplot(1, 5, i) plt.imshow(X=data[0][0]) plt.tight_layout() plt.show() plt.figure(figsize=[7, 9]) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(data=origin_data, main_title="s500_394origin_data") show_images1(data=s300_data, main_title="s300_data") show_images1(data=s200_data, main_title="s200_data") show_images1(data=s100_data, main_title="s100_data") show_images1(data=s50_data, main_title="s50_data") show_images1(data=s10_data, main_title="s10_data") show_images1(data=s1_data, main_title="s1_data") show_images1(data=s200_300_data, main_title="s200_300_data") show_images1(data=s300_200_data, main_title="s300_200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, p=None, pin=False, f=0, pm='constant'): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) temp_s = s im = data[0][0] for i in range(1, 6): plt.subplot(1, 5, i) if not temp_s: s = [im.size[1], im.size[0]] rc = RandomCrop(size=s, padding=p, # Here pad_if_needed=pin, fill=f, padding_mode=pm) plt.imshow(X=rc(im)) # Here plt.tight_layout() plt.show() plt.figure(figsize=[7, 9]) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(data=origin_data, main_title="s500_394origin_data") show_images2(data=origin_data, main_title="s300_data", s=300) show_images2(data=origin_data, main_title="s200_data", s=200) show_images2(data=origin_data, main_title="s100_data", s=100) show_images2(data=origin_data, main_title="s50_data", s=50) show_images2(data=origin_data, main_title="s10_data", s=10) show_images2(data=origin_data, main_title="s1_data", s=1) show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300]) show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200])